Paradigmenwechsel : Forscher wollen E-Maschinen mit Simulationen verbessern

TU Darmstadt und TU Graz intensivieren ihre Forschungen, wie sich elektrische Maschinen durch Computersimulation entscheidend verbessern lassen.

TU Darmstadt und TU Graz intensivieren ihre Forschungen, wie sich elektrische Maschinen durch Computersimulation entscheidend verbessern lassen.

- © TU Graz

Die Deutsche Forschungsgemeinschaft (DFG) und der österreichische Wissenschaftsfonds FWF fördern das Vorhaben mit über 8 Mio Euro. Das bewilligte koordinierte Programm ist der erste gemeinsame deutsch-österreichische Forschungsverbund in der Förderlinie „Sonderforschungsbereiche/Transregio (DFG) / Spezialforschungsbereiche (FWF)“.

Potenzial elektrischer Maschinen für Klimaziele nutzen

Elektrische Maschinen spielen seit Jahrzehnten eine zentrale Rolle bei der Energieumwandlung, nicht nur als Generatoren zur Erzeugung elektrischer Energie, sondern auch als Motoren, z.B. für Elektrofahrzeuge. Sie machen mehr als die Hälfte des elektrischen Gesamtenergieverbrauchs aus. Die moderne Leistungselektronik brachte zahlreiche neue Betriebs- und Einsatzmöglichkeiten solcher Motoren, und zusammen mit neuen Materialien und Fertigungstechniken sowie durch Fortschritte in der Konstruktionsoptimierung und Regelungstechnik bergen sie enormes Potenzial für das Erreichen der Klimaziele.

Aktuelle Auslegungsverfahren für elektrische Maschinen basieren auf nur wenigen Parametern und Betriebsarten, typischerweise bei konstanter Drehzahl oder konstantem Drehmoment. Optimierungspotenzial bleibt dadurch auf der Strecke. „Dieses Potenzial wollen wir nun nutzbar machen und mit den Forschungsarbeiten einen Paradigmenwechsel vollziehen, hin zu neuen integrierten Simulations- und Auslegungsansätzen“, erklären Sebastian Schöps und Annette Mütze unisono.

Die neuen Ansätze berücksichtigen von Anfang an alle wichtigen Aspekte einer elektrischen Maschine, wie Form und Topologie, zeitabhängige Betriebszyklen, komplexes Materialverhalten, Parameterunsicherheiten, Robustheit und Lärmentwicklung, sowie neue Kühltechniken zum Ausreizen thermischer Grenzen.